STOICH	1101	MET	RY:
MIXED			

Name

1. $N_2 + 3H_2 \rightarrow 2.NH_3$				
25.0gN2 Imol 2 mols NH3 22.4 L = 28.02g Imol Ng Imol NH3 40.0L				
2. $2\text{KCIO}_3 \rightarrow 2\text{KCI} + 3\text{O}_2$ 5.0 g KClO ₃ \rightarrow ? LO ₂ If 5.0 g of KClO ₃ is decomposed, what volume of O ₂ is produced at STP?				
5.0 g K CIO3 Imol 3 mols 02 122.4L = 1.4 122.55 2mds KCIO3 Imol 137 L				
3. How many grams of KCI are produced in Problem 2?				
5.0g KC103 mol 2 mols KC1 74.55g = 3.0 122.55 2 mols KCO3 mol 3.04 or				
4. Zn + 2 HCl → ZnCl ₂ + H ₂ 2.5 g 7m = ?LH ₂ What volume of hydrogen at STP is produced when 2.5 g of zinc react with an excess of hydrochloric acid?				
2.5g 2n 1md 1md H2 22.4L = 86 65.39g 1md Zn 1md = 856 L				
5. H ₂ SO ₄ + 2NaOH → 2H ₂ O + Na ₂ SO ₄ 2.0g Na ₂ SO ₄ ? molec of H ₂ O				
produced in the above reaction?				
2.0g Nay 504 mol 2 mols H20 16.02 x 1023 molec.				
6. 2 AICI3 → 2 AI + 3 CI2 10.09 A1CI3 =? molec Cl2				
If 10.0 g of aluminum chloride are decomposed, how many molecular of Cl				
are produced?				
10.0g AICI3 Inol 3 mols Clo 6.02×1023 molec. 6.77 × 10 22 133.339 2 mols AICI3 Inol Clo 4.35 × 10 molec.				

STOICHIOMETRY: **VOLUME-VOLUME PROBLEMS**

1. N₂ +3 H₃ → 2 NH₄

5LN=? LHD

What volume of hydrogen is necessary to react with five liters of nitrogen to produce ammonia? (Assume constant temperature and pressure.)

5 L Na Imol No 3 mols H2 22.4 L 122.4 L Imol No Imol H2

2. What volume of ammonia is produced in the reaction in Problem 1?

5L=? LNH3 5LN2/2NH3 =

3. C₃H₈ +5O₂ → 3CO₂ +4H₂O 20 L O₂ = 7 L CO₂

If 20 liters of oxygen are consumed in the above reaction, how many liters of carbon dioxide are produced?

 $\frac{20 L 0_2 3 C0_2}{5 0_2} =$

 $4.2 H_2O \rightarrow 2 H_2 + O_2$

30 ml Ho = ? ml Do

If 30 mL of hydrogen are produced in the above reaction, how many milliliters of oxygen are produced?

30 mL 100 =

5.200 + 0, → 200, 75 L CO = ? L CO

How many liters of carbon dioxide are produced if 75 liters of carbon monoxide are burned in oxygen? How many liters of oxygen are necessary? $75 LCD = ?LD_2$

STOICHIOMETRY: MOLE-MOLE PROBLEMS

Name Key

1. $N_2 + 3H_2 \rightarrow 2NH_3$

How many moles of hydrogen are needed to completely react with two moles of nitrogen?

2 mols N2 3 mols H2

6 mols

2. 2 KCIO3 → 2 KCI + 302

How many moles of oxygen are produced by the decomposition of six moles of potassium chlorate?

6 mols KC103 3 mols 02 2 mols KC103

9 mols

3. $Zn + 2HCI \rightarrow ZnCl_2 + H_2$

How many moles of hydrogen are produced from the reaction of three moles of zinc with an excess of hydrochloric acid?

3 mols Zn 1 mol H2 =

3 mols

4. $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4/H_2O$

How many moles of oxygen are necessary to react completely with four moles of propane (C₃H₈)?

4 mols C3 Hg | 5 mols O3 = 20

20 mols

5. $K_3PO_4 + AI(NO_3)_3 \rightarrow 3KNO_3 + AIPO_4$

How many moles of potassium nitrate are produced when two moles of potassium phosphate react with two moles of aluminum nitrate?

2 mols K3 PO4 3 mols KNO3 = 6 mols KNO3

2 mols (A1(NO3)3 | 3 mols KNO3 = 6 mol KNO3 6 mols KNO3

STOICHIOMETRY: MASS-MASS PROBLEMS

Name

	-	The state of the s		
1.,	2KCIO3	→2.KCI	+ 302	

How many grams of potassium chloride are produced if 25 g of potassium chlorate decompose?

2.
$$N_2 + 3H_2 \rightarrow 2NH_3$$

How many grams of hydrogen are necessary to react completely with 50.0 g of nitrogen in the above reaction?

How many grams of ammonia are produced in the reaction in Problem

$$\frac{50.09 \, \text{N}_{2} \, |\, \text{Imol}}{28.029 \, |\, \text{mol} \, N_{2} \, |\, 17.04g} = 60.8g$$

$$28.02g \, |\, \text{mol} \, N_{2} \, |\, \text{Imol} \, 60.8g \, N_{3}$$

$$4.2 \, \text{AgNO}_{3} + \text{BaCl}_{2} \rightarrow 2 \, \text{AgCl} + \text{Ba(NO}_{3})_{2} \qquad 5.0g \, \text{RgNO}_{3} = g.^{2} \, \text{AgCl}$$
How many grams of silver oblacide.

4.
$$2 \text{AgNO}_3 + \text{BaCl}_2 \rightarrow 2 \text{AgCl} + \text{Ba(NO}_3)_2$$

How many grams of silver chloride are produced from 5.0 g of silver nitrate reacting with an excess of barium chloride?

5. How much barium chloride is necessary to react with the silver nitrate in Problem 4?

5.0g AgNO3 | mol | mol Baclo | 208.239 = 3.19 169.889 | 2 mols | 1 mol Baclo Ballo