GIBBS	FREE	ENER	GY
--------------	-------------	-------------	----

Name _____

For a reaction to be spontaneous, the sign of ΔG (Gibbs Free Energy) must be negative. ne mathematical formula for this value is:

$$\Delta G = \Delta H - T \Delta S$$

where ΔH = change in enthalpy or heat of reaction

T = temperature in Kelvin

 ΔS = change in entropy or randomness

Complete the table for the sign of ΔG ; +, – or undetermined. When conditions allow for an undetermined sign of ΔG , temperature will decide spontaneity.

ΔΗ	ΔS	ΔG
-	+	q.
+	-	
_	-	
+	+	

Answer the questions below.

- 2. The conditions in which ΔG is always positive is when ΔH is $\frac{\textit{positive}}{}$ and ΔS is $\frac{\textit{negative}}{}$.
- 3. When the situation is indeterminate, a low temperature favors the (entropy / enthalpy) factor, and a high temperature favors the (entropy / enthalpy) factor.

Answer Problems 4-6 with always, sometimes or never.

- 5. The reaction: energy + $2H_2(g) + O_2(g) \rightarrow 2H_2O(l)$ will _______ be spontaneous. Lemp is high
- spontaneous.

 4. The reaction: energy + $H_2O(s) \rightarrow H_2O(l)$ will <u>sometimes</u> be spontaneous.
- 7. What is the value of ΔG if $\Delta H = -32.0$ kJ, $\Delta S = +25.0$ kJ/K and T = 293 K? $\underline{} = 7.360$ kJ
- 9. What is the value of ΔG if $\Delta H = +12.0$ kJ, $\Delta S = -5.00$ kJ/K and T = 290. K? $\frac{+ 1460 \text{ kJ}}{}$