2.1 Matter and Organic Compounds

Lesson 2.1: True or False

Name	Class	Date
Write true if the s	tatement is true or false if the statement is false.	
1. An ato	om is smaller than an element.	
2. Organ	ic compounds are found in living organisms.	
3. Protein	ns are made out of amino acids.	
4. Protein	ns speed up chemical reactions.	
5. The D	NA code carries instructions for the correct sequen	ce of nucleic acids in a protein
6. Sugars	and phosphate groups form the middle of a nuclei	c acid chain.
7. DNA ((and RNA) is made out of nucleotides.	
8. A prot	ein consists of one or more polypeptide chains.	
9. Lipids	include fats, oils, and sugars.	
10. Carbo	ohydrates are the most common type of organic com	mpound.
11. Pean	it oil is an unsaturated fatty acid.	
12. Cytos	sine and adenine are complementary bases in DNA	
13. A dot	uble helix is like a spiral staircase.	
14. Phos	pholipids form cell membranes.	
15. Carbo	ohydrates are made out of monosaccharides.	

Lesson 2.1: Critical Reading

Name

Class

Date

 $Read\ these\ passages\ from\ the\ text\ and\ answer\ the\ questions\ that\ follow.$

The Significance of Carbon

A compound found mainly in living things is known as an **organic compound**. Organic compounds make up the cells and other structures of organisms and carry out life processes. Carbon is the main element in organic compounds, so carbon is essential to life on Earth. Without carbon, life as we know it could not exist. Why is carbon so basic to life? The reason is carbon's ability to form stable bonds with many elements, including itself. This property allows carbon to form a huge variety of very large and complex molecules. In fact, there are nearly 10 million carbon-based compounds in living things! However, the millions of organic compounds can be grouped into just four major types: carbohydrates, lipids, proteins, and nucleic acids. You can compare the four types in **Table 2.1**. Each type is also described below.

Type of Compound	Examples	Elements	Functions
Carbohydrates	sugars, starches	carbon, hydrogen, oxy- gen	provides energy to cells, stores energy, forms body structures
Lipids	fats, oils	carbon, hydrogen, oxy- gen	stores energy, forms cell membranes, carries messages
Proteins	enzymes, antibodies	carbon, hydrogen, oxy- gen, nitrogen, sulfur	helps cells keep their shape, makes up mus- cles, speeds up chemical reactions, carries mes- sages and materials
Nucleic Acids	DNA, RNA	carbon, hydrogen, oxy- gen, nitrogen, phospho- rus	contains instructions for proteins, passes instruc- tions from parents to offspring, helps make proteins

Table 2.1: Types of Organic Compounds

Carbohydrates

Carbohydrates are the most common type of organic compound. A **carbohydrate** is an organic compound such as sugar or starch, and is used to store energy. Like most organic compounds, carbohydrates are built of small, repeating units that form bonds with each other to make a larger molecule. In the case of carbohydrates, the small, repeating units are called monosaccharides.

Lipids

A **lipid** is an organic compound such as fat or oil. Organisms use lipids to store energy, but lipids have other important roles as well. Lipids consist of repeating units called fatty acids. There are two types of fatty acids: saturated fatty acids and unsaturated fatty acids.

Proteins

A **protein** is an organic compound made up of small molecules called **amino acids**. There are 20 different amino acids commonly found in the proteins of living things. Small proteins may contain just a few hundred

amino acids, whereas large proteins may contain thousands of amino acids.

Nucleic Acids

A **nucleic acid** is an organic compound, such as DNA or RNA, that is built of small units called nucleotides. Many nucleotides bind together to form a chain called a **polynucleotide**. The nucleic acid **DNA** (deoxyribonucleic acid) consists of two polynucleotide chains. The nucleic acid **RNA** (ribonucleic acid) consists of just one polynucleotide chain.

Questions

1. List two functions of organic compounds.

2. Which two categories of organic compounds store energy? Which of these organic compounds is more common?

- 3. What is a main difference between DNA and RNA?
- 4. Describe a difference between large and small proteins.
- 5. Why is carbon considered the essential element of life?

Lesson 2.1: Multiple Choice

Name

 $Class_{}$

Circle the letter of the correct choice.

- 1. Water (H_2O) is a(n)
 - (a) element.
 - (b) atom.
 - (c) compound.
 - (d) carbohydrate.
- 2. A process that changes some chemical substances into others is a
 - (a) chemical bond.
 - (b) chemical reaction.
 - (c) chemical equation.
 - (d) chemical formula.
- 3. The main difference between saturated and unsaturated fatty acids is
 - (a) the amount of energy found in the fatty acid.
 - (b) saturated fatty acids are liquids.
 - (c) unsaturated fatty acids can be packed together very tightly.
 - (d) the number of hydrogen atoms bonded to the carbon atoms.
- 4. The function of proteins can include
 - (a) helping cells keep their shape.
 - (b) helping to destroy foreign substances.
 - (c) speeding up biochemical reactions.
 - (d) all of the above
- 5. The characteristics of DNA includes which of the following?
 - (a) DNA is made of nucleotides consisting of a sugar, a phosphate group, and a carbon base.
 - (b) DNA is made of a single polynucleotide chain, which winds into a double helix.
 - (c) DNA is how inherited characteristics are passed from one generation to the next.
 - (d) all of the above
- 6. Which category of organic compound is the major component of cell membranes?
 - (a) carbohydrate
 - (b) lipid
 - (c) protein
 - (d) nucleic acid
- 7. The cell wall of plants is made out of
 - (a) starch.
 - (b) glycogen.
 - (c) cellulose.
 - (d) chitin.
- 8. The main element of organic compounds is
 - (a) hydrogen.
 - (b) oxygen.
 - (c) nitrogen.
 - (d) carbon.

Lesson 2.1: Vocabulary I

Name	Class Date
Match the	e vocabulary word with the proper definition.
Definitio	ons
	1. an organic compound that stores energy, forms cell membranes, carries messages
	2. an organic compound that contains instructions for proteins
	3. an organic compound that provides energy to cells, stores energy, forms body structures
2	4. an organic compound that helps cells keep their shape
	5. a pure substance, like carbon
(6. may contain just a few simple sugars or thousands
	7. subunit that make up proteins
8	8. subunit used to make nucleic acids
(9. lipid in which carbon atoms are bonded to as many hydrogen atoms as possible
	10. lipid in which carbon atoms are bonded to groups of atoms other then hydrogen
	11. the major component of cell membranes
·	12. anything that takes up space and has mass
Terms	
a. amino	acid
b. carboh	ydrate
c. DNA	
d. elemen	t
e. lipid	
f. matter	
g. nucleot	tide
h. phosph	nolipid
i. polysac	charide
j. protein	
k. saturat	ted fatty acid
l. unsatur	rated fatty acid

2.2 Biochemical Reactions

Lesson 2.2: True or False

Name	Class	Date
Write true	e if the statement is true or false if the statement is false.	
1	. A substance that forms as a result of a chemical reaction is called	a reactant.
2	2. Only some chemical reactions need energy to get started.	
3	B. Biochemical reactions take place inside the cells.	
4	. A chemical reaction that releases heat is an exothermic reaction.	
Đ	. Most biochemical reactions need help to get started.	
6	6. Anabolic reactions give off energy.	
7	Y. Metabolism is the sum of all the biochemical reactions in an organ	ism.
8	3. In a chemical reaction, the quantity of an element may change.	
0	D. During a chemical reaction, some bonds break and new bonds form	1.
1	0. Activation energy is the energy needed to start a chemical reaction	n.
1	1. An enzyme speeds up the reaction by lowering the activation ener	.gy.
number of	2. In a chemical reaction, the number of atoms on one side of the atoms on the other side.	arrow may differ from the
1	3. Matter is always conserved.	
1	4. Understanding chemistry is needed to understand fully the proces	sses within the cell.

_____15. In a chemical reaction, the quantity of each element does not change.

Lesson 2.3: True or False

Name	Class	Date
Write true	e if the statement is true or false if the statement is false.	
1	1. Water is a chemical.	
$\frac{1}{\text{does.}}$ 2	2. The hydrogen atoms in a water molecule attract electrons more s	strongly than the oxygen atom
3	3. Hydrogen bonds are very strong bonds.	
4	4. Water is a reactant in photosynthesis.	
5	5. Enzymes in the small intestine need an acidic environment in o	rder to work.
6	6. Pure water has a pH of 7.	
7	7. Lemon juice is a stronger acid than orange juice.	
8	8. An ion is an electrically charged atom or molecule.	
0	9. The stomach is a very acidic environment.	
1	10. Water is released during cellular respiration.	
1	11. Soap is very acidic.	
1	12. Hydrogen bonds cause water to have a relatively high boiling	point of 100°F.
1	13. Acids have a pH lower than 7.	
1	14. Bases have a pH lower than 7.	
1	15. A water molecule has positive and negative parts to it.	

NAME		DATE	CLASS	
Chapte	er 1			Text Pages 12–18
STUDY	GUIDE	• Solving	Problems	
In the blank	x, write the letter of the term	or phrase that best comple	etes each statement.	
1.	The first step in any pr a. collect information a	oblem-solving strategy about the problem	is to b. identify the problem	
2.	The method used by so a. control	ientists for solving pro	blems is known as the b. scientific method	
3.	A prediction about a pr a. hypothesis	roblem that can be teste	ed is a b. conclusion	
4.	A is a standard a. variable	for comparison in an e	experiment. b. control	
5.	An explanation backed a. theory	by results obtained fro	om repeated tests or experimen b. variable	ts is a
6.	A process that uses cer a. theory	tain skills to solve prob	lems is called b. critical thinking	
7.	A is a changeal a. variable	ole factor in an experim	nent. b. control	
8.	The best experiments to a. variable	est only one at a	a time. b. control	
<u> </u>	If a conclusion does no a. experiment did not	t support a hypothesis, work properly	the b. hypothesis should be rev	vised
10.	If a hypothesis is suppo	orted by new data gath	ered over a period of time, it n	nay
	a. control		b. theory	
11.	Making lists, drawing g for solving problems.	graphs, making a mode	el, and eliminating possibilities	are all
	a. strategies		b . variables	
12.	If a hypothesis has been becomes a	n backed by results from	m repeated tests or experiment	s, it
	a. variable		b. theory	

NAME	DATE	CLASS	
Chapter 2			Text Pages 32-37
STUDY GUIDE	• Atoms		

Circle the term in parentheses that makes each statement correct.

- **1.** Protons are particles (outside, in) the nucleus of an atom.
- 2. Electrons are atomic particles with a (positive, negative) charge.
- **3.** An example of matter is (air, heat).
- **4.** The building blocks of matter are (atoms, compounds).
- **5.** (Neutrons, Protons) are particles in the atom's nucleus that have no electric charge.
- 6. The atomic particles outside of the atom's nucleus are (electrons, protons).
- 7. Substances made up of only one kind of atom are called (isotopes, elements).
- 8. Isotopes are atoms of the same element that have different numbers of (neutrons, protons).
- 9. Negatively charged particles that move around the atom's nucleus are (neutrons, electrons).
- **10.** Two atoms of the same element that have different (mass numbers, atomic numbers) are isotopes of the element.
- **11.** A difference in the (mass number, atomic number) of atoms means the atoms are of different elements.
- **12.** The nucleus of an atom has a (positive, negative) charge.
- 13. Carbon-14 is an (isotope. element) of carbon.
- 14. The mass number of an atom with 12 protons and 12 neutrons is (12, 24).
- 15. The atomic number of an atom is equal to the number of (protons. neutrons) in its nucleus.
- **16.** In atoms with equal numbers of electrons and protons, there is (a positive, no) electric charge.
- 17. Anything that takes up space and has mass is (matter, an element).
- **18.** A model of an atom is (larger, smaller) than the actual atom.
- **19.** The nucleus of an atom is made up of neutrons and (electrons, protons).
- **20.** Isotopes enable scientists to determine the (age, size) of ancient objects.

NAME	DATE	CLASS	
Chapter 2			Text Pages 38–43
STUDY GUIDE	Combination	ns of Ato	ms
Use the words in the box to complete the	statements. You will use the words n	nore than once.	
molecule compound	chemical properties	ions	mixture
1. The components of a	can be se	parated by physica	l means.
2. The	of an element determine h	now the element w	ill change when
3. A in it.	is a substance that has differ	rent properties from	n the elements
4. Combined atoms form a			
5. Electrically charged atoms are .	·		
6. Table salt is an example of a			
7. An example of a	is salt water.		
8. Table salt is formed when the	C	of sodium and chlo	rine combine.
9. Iron rusts when it comes in con	tact with water because of its $_$		
10. The atoms of hydrogen and oxy compound water.	ygen combine to form a		of the
Identify the two atoms that are ions. Lab ion with a plus sign.	el the negatively charged ion with a n	ninus sign. Label the	positively charged
11 protons 12 neutrons 10 electrons	8 protons 8 neutrons 8 electrons	17 pro 18 neu 18 elec	tons itrons ctrons
			0 0 7₽ 0 00 0 0

SECTION 2-1 REVIEW

COMPOSITION OF MATTER

VOCABULARY REVIEW Define the following terms.

1.	atom .				
2.	neutro	on			
3.	compo	ound			
4.	covale	ent bond			
5.	ion				
MU	LTIPL	E CHOICE Write The atomic number a. 3.	the correct letter in t er of carbon is 6. Therefor b. 6.	he blank. e, the number of proto c. 7.	ons in a carbon atom equals d. 12.
	2.	One of the kinds of	of particles found in the i	nucleus of an atom is	the
		a. proton.	b. electron.	c. ion.	d. boron.
	3.	The maximum nu	mber of electrons that ca	n be held in an atom	's second energy level is
		a. 2.	b. 4.	c. 6.	d. 8.
	4.	Of the following e	lements, the one that is a	nost likely to form io	nic bonds is
		a. hydrogen.	b. carbon.	c. sodium.	d. oxygen.
	5.	An example of a c	compound is		
		a. water.	b. hydrogen gas.	c. oxygen gas.	d. chloride ion.

HRW material copyrighted under notice appearing earlier in this work.

9

Nan	ne	Class		Date
SH	ORT ANSWER Answer the question	is in the space prov	vided.	
1.	What is the difference between mass an	nd weight?		
2.	Identify the elements and the number of	atoms of each elemer	nt in each of	the following compounds:
	BO ₂	KCl		
	C ₆ H ₁₂ O ₆	NH ₃		
3.	How many pairs of electrons do the two	o oxygen atoms in an	oxygen mol	ecule share with each
	other? Explain your answer.			
4.	Critical Thinking The atomic number	r of argon is 18. Will a	argon tend to	o form bonds with other
	elements? Explain your answer.			
STF the	RUCTURES AND FUNCTIONS Label models by drawing the correct nur	each atom in the s nber of electrons a	spaces prov at each ene	vided, and complete ergy level.
	The diagrams below represent incompl carbon (atomic number 6), and sulfur (contain up to eight electrons.	ete models of the ato atomic number 16). N	oms helium (Note: The th	atomic number 2), ird energy level can
a	b		c	

Skills Worksheet) Scientific Methods

SEQUENCING/RELATING INFORMATION

Scientists at a major university became concerned by recent reports of severe insomnia in a number of people with previously normal sleep patterns. These scientists decided to undertake a scientific investigation to try to determine the cause of this behavior. This scientific investigation had six stages. The paragraphs below, labeled A–F, describe the stages of this investigation, but the sequence of the stages is incorrect.

Sequence the stages properly by listing the letters of the paragraphs below in the correct order in the chart on the next page. Then decide which step in the scientific process each paragraph describes. In the space provided in the chart, write the step next to the number.

- **A.** The scientists gathered 35 volunteers who agreed to eat 3 meals a day while living at the university research center for 30 days. These volunteers had no previous history of insomnia. They were aware that the meals would be made up of some foods containing the fat substitute, and they had been informed of the potential risks involved. Within 14 days, 17 of the volunteers were having trouble sleeping at night, and within 21 days, the entire group was showing signs of insomnia.
- **B.** The scientists stated that if the chemical in the fat substitute was reacting with chemicals in the brain to cause the insomnia in the subjects being investigated, it should have a similar effect on other people.
- **C.** The scientists gathered 80 volunteers who agreed to eat 3 meals a day while living at the university research center for 60 days. These volunteers had no previous history of insomnia. They were aware that the meals would be made up of some foods containing the fat substitute, and they had been informed of the potential risks involved. The scientists divided the volunteers into two groups. Group A consisted of 40 volunteers who were fed meals with foods containing the fat substitute. Group B consisted of 40 volunteers who were fed meals that did not contain the fat substitute. At the end of 60 days, the 40 volunteers in Group A were suffering from insomnia; the 40 volunteers in Group B were sleeping normally. Moreover, within 7 days of discontinuing the diet containing the fat substitute, the sleep patterns of the members of Group A returned to normal.
- **D.** Because the fat substitute contained a chemical not typically found in the human diet, the scientists thought that this chemical caused the insomnia by reacting with other chemicals in the brain.
- **E.** The scientists agreed that the chemical in the fat substitute was causing insomnia in people who ate foods containing this additive.

Name	Class	 Date	

Scientific Methods continued

F. The scientists began to track the personal habits of 127 people who had recently reported the onset of insomnia, hoping to find a clue to the cause of this sleep disorder. Information about previous and current sleep patterns, exercise routines, stress at home and work, eating habits, and other criteria was gathered over a 6-month period. The only common element in the lives of all of the subjects was the consumption of foods containing a new fat substitute.

	Correct order	Step in the scientific investigation
1.		
2.		
3.		
4.		
5.		
6.		

Skills Worksheet **Cell Structure**

INTERPRETING DIAGRAMS

Biology students were working on a class project. They prepared copies of transmission electron micrographs of a bacterium, a plant cell, and an animal cell for display in their classroom. Unfortunately, the pictures were not labeled and got mixed up. Help these students correctly identify the cells and cell structures. Use the figures below to answer questions 1–5.

In the space provided, write the names of each cell's labeled structures (A-I). Using this information, write the identity of each cell-bacterium, plant cell, or animal cell.

Copyright © by Holt, Rinehart and Winston. All rights reserved.

Name	Class	Date
Cell Structure continued		
Read each question, and w	rite your answer in the space	ce provided.
4. Are these cells prokary	otic or eukaryotic?	
5. What are the primary d What characteristics do	ifferences between the thre they share?	ee cells?